
MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 1

Triggers are stored programs, which are automatically executed or fired when some

events occur. Triggers are in fact, written to be executed in response to any of the

following events:

• A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

• A database definition (DDL) statement (CREATE, ALTER, or DROP).

• A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the

event is associated.

� Use Of Database Triggers:

• A trigger can permit DML statements against a table only if they are issued,

 during regular business hours or on predetermined weekdays.

• Used to keep an audit trail of a table.

• Prevent invalid transaction.

• Enforce complex security authorizations.

� Database triggers V/S Procedures

• Triggers do not accept parameters whereas procedures can.

• A trigger is executed impilcitly by Oracle engine.

• A procedure is executed explicitly.

� How to apply database triggers

A trigger has three basic parts:

1. A triggering event.

2. A trigger restriction.

3. A trigger action.

1. Triggering event or statement: It is a SQL statement that causes a trigger to be

fired. Can be INSERT, UPDATE or DELETE statement.

2. Trigger Restriction: Specifies Boolean expression that must be true for the trigger
to fire. It functions is to conditionally control the execution of a trigger. Specified in

WHEN Clause.

3. Trigger Action: PL/SQL code to be executed when a triggering statement is
 encountered and any trigger restriction evaluates to TRUE.

Creating Triggers

Syntax :

CREATE [OR REPLACE] TRIGGER <trigger_name>

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}[OF col_name]

ON <table_name>

[REFERENCING OLD AS old NEW AS new]

[FOR EACH ROW [WHEN (condition)]]

DECLARE

<variable declarations>;

<constant declarations>;

BEGIN

<PL/SQL Subprogram body>;

EXCEPTION

<Exception PL/SQL block>;

END;

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 2

Where,

• CREATE [OR REPLACE] TRIGGER trigger_name : Creates or replace an

existing trigger with the trigger_name.

• {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be

executed. The INSTEAD OF clause is used for creating trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

• [OF col_name]: This specifies the column name that would be updated.

• [ON table_name]: This specifies the name of the table associated with the

trigger.

• [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old

values for various DML statements, like INSERT, UPDATE, and DELETE.

• [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be

executed for each row being affected. Otherwise the trigger will execute just

once when the SQL statement is executed, which is called a table level

trigger.

• WHEN (condition): This provides a condition for rows for which the trigger

would fire. This clause is valid only for row level triggers.

� Benefits of Triggers
• Generating some derived column values automatically

• Enforcing referential integrity

• Event logging and storing information on table access

• Auditing

• Synchronous replication of tables

• Imposing security authorizations

• Preventing invalid transactions

For Example: The price of a product changes constantly. It is important to maintain

the history of the prices of the products.

We can create a trigger to update the 'product_price_history' table when the price of

the product is updated in the 'product' table.

1) Create the 'product' table and 'product_price_history' table
CREATE TABLE product_price_history

(product_id number(5),

product_name varchar2(32),

supplier_name varchar2(32),

unit_price number(7,2));

CREATE TABLE product

(product_id number(5),

product_name varchar2(32),

supplier_name varchar2(32),

unit_price number(7,2));

2) Create the price_history_trigger and execute it.
CREATE or REPLACE TRIGGER p1

BEFORE UPDATE OF unit_price

ON product

FOR EACH ROW

BEGIN

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 3

INSERT INTO product_price_history

VALUES (:old.product_id,:old.product_name,:old.supplier_name,:old.unit_price);

END;/

3) Lets update the price of a product.

 update product set unit_price = 250 where product_id = 101;

Once the above update query is executed, the trigger fires and updates the

'product_price_history' table.

4) If you ROLLBACK the transaction before committing to the database, the data

inserted to the table is also rolled back.

� Types of PL/SQL Triggers

There are two types of triggers based on the which level it is triggered.

1) Row level trigger - An event is triggered for each row updated, inserted or deleted.

2) Statement level trigger - An event is triggered for each sql statement executed.

PL/SQL Trigger Execution Hierarchy

The following hierarchy is followed when a trigger is fired.

1. BEFORE statement trigger fires first.

2. Next BEFORE row level trigger fires, once for each row affected.

3. Then AFTER row level trigger fires once for each affected row. This event will

alternates between BEFORE and AFTER row level triggers.

4. Finally the AFTER statement level trigger fires.

For Example: Let's create a table 'product_check' which we can use to store

messages when triggers are fired.

CREATE TABLE product (Message varchar2(50), Current_Date number(32));

Let's create a BEFORE and AFTER statement and row level triggers for the product

table.

1) BEFORE UPDATE, Statement Level:

This trigger will insert a record into the table 'product_check' before a sql update

statement is executed, at the statement level.

CREATE or REPLACE TRIGGER Before_Update_Stat_product

BEFORE UPDATE ON product

Begin

 INSERT INTO product_check Values('Before update, statement level',sysdate);

END;

/

2) BEFORE UPDATE, Row Level:

This trigger will insert a record into the table 'product_check' before each row is

updated.

CREATE or REPLACE TRIGGER Before_Upddate_Row_product

BEFORE

UPDATE ON product

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 4

FOR EACH ROW

BEGIN

INSERT INTO product_check Values('Before update row level',sysdate);

END;

/

3) AFTER UPDATE, Statement Level:

This trigger will insert a record into the table 'product_check' after a sql update statement is

executed, at the statement level.

CREATE or REPLACE TRIGGER After_Update_Stat_product

AFTER UPDATE ON product

BEGIN

INSERT INTO product_check

Values('After update, statement level', sysdate);

End;

/

4) AFTER UPDATE, Row Level:

This trigger will insert a record into the table 'product_check' after each row is updated.

CREATE or REPLACE TRIGGER After_Update_Row_product

AFTER INSERT ON product

FOR EACH ROW

BEGIN

INSERT INTO product_check

Values('After update, Row level',sysdate);

END;

/

Now lets execute a update statement on table product.

UPDATE PRODUCT SET unit_price = 800

WHERE product_id in (100,101);

Lets check the data in 'product_check' table to see the order in which the trigger is

fired.

SELECT * FROM product_check;

Output:

Mesage Current_Date

Before update statement level 19-Sep-2013

Before update row level 19-Sep-2013

After update row level 19-Sep-2013

Before update row level 19-Sep-2013

After update row level 19-Sep-2013

After update, statement level 19-Sep-2013

The above result shows 'before update' and 'after update' row level events have

occurred twice, since two records were updated. But 'before update' and 'after

update' statement level events are fired only once per sql statement.

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 5

The above rules apply similarly for INSERT and DELETE statements.

� Working with Views

For our next example, we will need to create a view (of PERSON table):

CREATE OR REPLACE

VIEW PERSON_VIEW AS

SELECT NAME FROM PERSON;

Now, we know that updating (or inserting) into a view is kind of pointless; however, we can

Provide this functionality using a trigger!

For example:

CREATE OR REPLACE TRIGGER PERSON_VIEW_INSERT

INSTEAD OF INSERT ON PERSON_VIEW

FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE(’INSERTING: ’ || :NEW.NAME);

-- we can also do

-- INSERT INTO PERSON(ID,NAME,DOB) VALUES

(N,:NEW.NAME,SYSDATE);

END;/

When we do an insert statement on PERSON_VIEW:

INSERT INTO PERSON_VIEW(NAME) VALUES (’SUPERMAN’);

Which produces the result:

INSERTING: SUPERMAN

� Trigger Exceptions (introduction)

� Sometimes, an error (or exception) is raised for a good reason. For example, to
prevent some action that improperly modifies the database.

� Let’s say that our database should not allow anyone to modify their DOB (after the
person is in the database, their DOB is assumed to be static). Anyway, we can

 create a trigger that would prevent us from updating the DOB:

CREATE OR REPLACE TRIGGER PERSON_DOB

BEFORE UPDATE OF DOB ON PERSON

FOR EACH ROW

BEGIN

RAISE_APPLICATION_ERROR(-20000,’CANNOT CHANGE DATE OF

BIRTH’);

END;

Notice the format of the trigger declaration. We explicitly specify that it will be called

BEFORE UPDATE OF DOB ON PERSON.

When we do the actual update for example:

UPDATE PERSON SET DOB = SYSDATE;

We end up with an error, that says we CANNOT CHANGE DATE OF BIRTH.

SQL> UPDATE PERSON SET DOB = SYSDATE;

UPDATE PERSON SET DOB = SYSDATE

*

ERROR at line 1:

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 6

ORA-20000: CANNOT CHANGE DATE OF BIRTH

ORA-06512: at "PARTICLE.PERSON_DOB", line 2

ORA-04088: error during execution of trigger ’PARTICLE.PERSON_DOB’

You should also notice the error code of ORA-20000. This is our -20000 parameter to

RAISE APPLICATION ERROR.

� Enabling and disabling triggers

• A database trigger may be either in enabled state or disabled state.

• Disabling trigger my improve performance when a large amount of table data

is to be modified, because the trigger code is not executed.

• Enabling or disabling can be done using alter statement

Syntax

ALTER TRIGGER TriggerName DISABLE/ENABLE;

For example,

UPDATE students set name = upper(name);

will run faster if all the triggers fired by UPDATE on STUDENTS table are disabled.

Triggers can be disabled as follows:

ALTER TRIGGER payments_bu_row DISABLE;

A disabled trigger is not fired until it is enabled.

A disabled trigger can be enable with the use of following command.

ALTER TRIGGER payments_bu_row ENABLE;

The following command disables all triggers of STUDENTS table.

ALTER TABLE students DISABLE ALL TRIGGERS;

Dropping A Trigger:

You can drop a trigger using the following command.

DROP TRIGGER Triggername;

� How to know Information about Triggers.
We can use the data dictionary view 'USER_TRIGGERS' to obtain information about

any trigger.

The below statement shows the structure of the view 'USER_TRIGGERS'

DESC USER_TRIGGERS;

NAME Type

--

TRIGGER_NAME VARCHAR2(30)

TRIGGER_TYPE VARCHAR2(16)

TRIGGER_EVENT VARCHAR2(75)

TABLE_OWNER VARCHAR2(30)

BASE_OBJECT_TYPE VARCHAR2(16)

TABLE_NAME VARCHAR2(30)

COLUMN_NAME VARCHAR2(4000)

REFERENCING_NAMES VARCHAR2(128)

WHEN_CLAUSE VARCHAR2(4000)

STATUS VARCHAR2(8)

MKICS PL/SQL Triggers

Prepared By Heena Patel (Asst. Prof) Page 7

DESCRIPTION VARCHAR2(4000)

ACTION_TYPE VARCHAR2(11)

TRIGGER_BODY LONG

This view stores information about header and body of the trigger.

SELECT * FROM user_triggers WHERE trigger_name =

'Before_Update_Stat_product';

The above sql query provides the header and body of the trigger

'Before_Update_Stat_product'.

� CYCLIC CASCADING in a TRIGGER

� This is an undesirable situation where more than one trigger enters into an infinite
loop.

� While creating a trigger we should ensure the such a situation does not exist.

� The below example shows how Trigger's can enter into cyclic cascading.
� Let's consider we have two tables 'abc' and 'xyz'. Two triggers are created.

1. The INSERT Trigger, triggerA on table 'abc' issues an UPDATE on table 'xyz'.

2. The UPDATE Trigger, triggerB on table 'xyz' issues an INSERT on table 'abc'.

� In such a situation, when there is a row inserted in table 'abc', trigger A fires and will
update able 'xyz'.

� When the table 'xyz' is updated, triggerB fires and will insert a row in table 'abc'.

� This cyclic situation continues and will enter into a infinite loop, which will crash the
database.

